Year 11 into Year 12 Transition Work: Chemistry A level

The step up from GCSE to A level Chemistry is a large and we would like everyone to get off to a running start by doing a bit of preparation and revisiting of some key skills (chemistry and maths) from GCSE.

Please make sure that you have completed this booklet and hand it in to your chemistry teacher in your first lesson in September.

If you want to do a bit more revision before you start there is a study guide which helps to bridge the gap between GCSE and A level:

Head start to A level Chemistry by CGP retail price $£ 4.95$
Maths skills are much more evident in the new A level specification and 20% of questions will involve higher paper GCSE Maths skills. Another CGP guide which you might find useful is:

Essential Maths Skills for A level Chemistry retail price $£ 7.50$

Charges on ions

Task 1

Learn the formulas of the ions in the table below:

Positive ions		Negative ions	
Group 1 ions: Lithium, Li+ Sodium, Na^{+} potassium, K^{+} Group 2 ions: magnesium, Mg^{2+} calcium Ca^{2+} barium Ba^{2+}	Group 3 ions: aluminium, Al^{1+} Other common ions: Silver, Ag^{+} Zinc, Zn^{2+} Ammonium, $\mathrm{NH}_{4}{ }^{+}$ Hydrogen, H^{+}	Group 7 ions: fluoride, F^{-} chloride Cl^{-} bromide Br^{-} iodide I ${ }^{-}$ Group 6 ions: oxide, O^{2-} Sulphide, S^{2-}	Other common ions: Nitrate, $\mathrm{NO}_{3}{ }^{-}$ Sulfate, $\mathrm{SO}_{4}{ }^{2-}$ Carbonate, $\mathrm{CO}_{3}{ }^{2-}$ Hydrogencarbonate, $\mathrm{HCO}_{3}{ }^{-}$ Hydroxide, OH^{-} Hydride, H^{-} Phosphate, $\mathrm{PO}_{4}{ }^{3-}$

You will need to learn the formulas of all the above ions, as it essential that you can have them at your fingertips for writing equations throughout the course. Expect to have a quick test on these in week 1 or 2.

Task 2 Working out Formulas of ionic compounds

Use the charges on the ions to work out the formulas of the ionic compounds listed below:

1) silver bromide \qquad
2) sodium carbonate \qquad
3) potassium oxide \qquad
4) iron (III) oxide \qquad
5) chromium (III) chloride \qquad
6) calcium hydroxide \qquad
7) aluminium nitrate \qquad
8) sodium sulfate \qquad
9) lead (II) oxide \qquad
10) sodium phosphate \qquad
11) zinc hydrogencarbonate \qquad
12) ammonium sulphate \qquad
13) gallium hydroxide \qquad
14) strontium selenide \qquad
15) radium sulfate \qquad
16) sodium nitride \qquad

Balancing Equations

From an early age you should have been able to balance chemical equations. However, at A level, you will often need to:

- work out the formulas yourselves
- work out what is made (so you need to know some basic general equations)
- for reactions involving ions in solution, write ionic equations

Some general reactions you should know:

General Reaction	Examples
substance + oxygen \rightarrow oxides	$\begin{aligned} & 2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \\ & 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \\ & \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
metal + water \rightarrow metal hydroxide + hydrogen	$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
metal + acid \rightarrow salt + hydrogen	$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
oxide + acid \rightarrow salt + water	$\mathrm{MgO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
hydroxide + acid \rightarrow salt + water	$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
carbonate + acid \rightarrow salt + water + carbon dioxide	$\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
hydrogencarbonate + acid \rightarrow salt + water + carbon dioxide	$\mathrm{KHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
ammonia + acid \rightarrow ammonium salt	$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
metal carbonate \rightarrow metal oxide + carbon dioxide (on heating)	$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

Task 3

Learn the word equations (in the above table) for the general reactions. Expect to be tested on this in week 2 or 3 .

Task 4

1) Balance the following equations.
$\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$ \qquad
$\mathrm{CuCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaCl}$
$\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ \qquad
2) Give balanced equations for the following reactions.
a) sodium + oxygen \rightarrow sodium oxide
b) aluminium + chlorine \rightarrow aluminium chloride
c) calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen
d) ammonia + sulphuric acid \rightarrow ammonium sulphate

Atomic Number, Mass Number and Isotopes

Task 5

Complete the following passages and the table:

Atomic number = number of \qquad

Mass number = number of \qquad + number of

The number of protons, neutrons and electrons in an atom can be worked out using the atomic number and mass number.

Number of protons $=$ \qquad

Number of neutrons $=$ \qquad

Number of electrons $=$ \qquad
Atoms of the same element have the same number of In fact, it is the number of that determines what type of atom it is (e.g. all atoms with 6 protons are carbon atoms). Atoms of different elements have different numbers of Isotopes are atoms with the same number of \qquad but a different number of \qquad This means they are atoms of the same with the same \qquad number but a different number

Atom	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
23 Na 11					
Li	3	7			
Ar		40	18		
K			19	20	
Al					
235 U					
92					

Structure and Bonding

Key ideas from structure and bonding at GCSE will be revised and developed in term 1. Make sure you are confident with concepts from GCSE.

Task 6

Make a summary of the different types of bonding and structure in the table below:

	Monatomic	Simple Molecular	Giant Covalent	Ionic	Metallic
Type of substances And examples	Group 0 elements e.g. He, Ar, Ne				
Type of bonding present	None				
Description of structure	Individual atoms with very weak forces between them				
Labelled Diagram to represent the structure					
Properties	Very low Boiling points Non- conductors Insoluble				
Name of particles	 Atoms				

Task 7

Draw dot and cross diagrams to represent the covalent bonding in the following molecules:
a) CH_{4}
b) NH_{3}
c) HCl
d) O_{2}
e) CO_{2}

Task 8

a) Draw diagrams to show how a magnesium atom reacts with an oxygen atom to form magnesium oxide, MgO Your diagram should show the electron transfer process.
b) Draw diagrams to show how a calcium atom reacts with chlorine atoms to form magnesium oxide, CaCl_{2}. Your diagram should show the electron transfer process.

Essential Maths skills for A Level chemistry

Significant figures

A significant figure is any digit which you are confident is correct. A non-significant figure is any digit that you can't be sure about. It's important to recognise how many significant figures a value has been quoted to and how to round your own data to an appropriate number of significant figures.

Remember:

- Count the number of significant figures from the first non-zero digit.
- Zeros at the start of a number are not significant.

So: $\quad 187.23$ is given to 5 s.f. 0.038 is given to 2 s.f. 448000 is given to 3 s.f.

- The rule for significant figures in calculations is to give your final answer to the same number of significant figures as the data value with the fewest significant figures used in the calculation.

Task 9

1. How many significant figures are each of these values given to?
a) 221985 Pa \qquad
b) 15200 g
c) 39.00 K
d) 0.00186 mol \qquad
2. Write each of the following to the number of significant figures shown:
a) 3457894 sig figs
d) 6.09613 sig figs
b) 2973003 sig figs
e) 0.0015633 sig figs
c) 0.078963 sig figs f) 0.0103984 sig figs \qquad
3. Complete the following sums and give the answers to the appropriate number of significant figures.
a) 6125×384
b) 25.00×0.010 \qquad
c) $13.5+0.18$ \qquad
4. 0.175 moles of sodium chloride were dissolved in $1.2 \mathrm{dm}^{3}$ of water. Use the formula concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ moles/volume $\left(\mathrm{dm}^{3}\right)$ to calculate the concentration of the solution, and quote your answer to the correct number of significant figures.
\qquad
\qquad
\qquad

Standard form

Standard form tidies up very big or very small numbers in calculations.
For example, there are 602000000000000000000000 particles in 1 mole. This is much easier to write as 6.02×10^{23}

Or $0.0051 \mathrm{~m}^{3}$ is easier to write as $5.1 \times 10^{-3} \mathrm{~m}^{3}$

Task 10

Write the following in standard form:

1. $0.000035 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ \qquad
2. 201500 Pa
3. 0.0167 moles
4. $6850000000 \mathrm{dm}^{3}$
5. 0.000000382 g

Complete the following calculations and give the answers to the appropriate number of significant figures.
a) $6.125 \times 10^{-3} \times 3.5$
b) $4.3 \times 10^{-4} / 7.00$
\qquad
c) $4.0 \times 10^{8}+35000$
d) $0.00156+2.4 \times 10^{3}$
e) $6.10 \times 10^{-2}-3.4 \times 10^{-5}$
f) $8.00 \times 10^{-3} \times 0.100 \times 10^{-3}$ \qquad

Converting units

Converting MASS Units

The Mass for weighing objects in Metric Units is similar to Capacity for Volumes.
In the Metric System, Mass is based on the Gram or " g " unit.

Mass conversions use 1000's, and usually create fairly large results.
$\mathbf{1 . 6}$ tonne $=$? $\mathbf{k g}$ Need to $\times 1000 \quad 1.6 \times 1000=\mathbf{1 6 0 0} \mathbf{k g}$

Task 11

Convert the following units :

1. 10 kg into g
2. 360 mg into g
3. 360 cm into m
4. $360 \mathrm{~cm}^{3}$ into m^{3}
5. $250 \mathrm{~cm}^{3}$ into dm^{3}
6. $2 \mathrm{dm}^{3}$ into mm^{3}
7. 42357 g into mg
8. $4.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to J mol${ }^{-1}$ \qquad
9. During a titration, $31 \mathrm{~cm}^{3}$ of an alkali is needed to neutralise $0.025 \mathrm{dm}^{3}$ of an acid. What is the total volume of the acid and alkali in cm^{3} ? \qquad
10. What is the total mass, in grams, of $137 \mathrm{mg}, 4 \mathrm{~g}$ and 32 kg ?

Using Formulae

Formulae are used often in chemistry, as they give a relationship between two or more quantities. It is an essential skill that you need to be able to rearrange formulae, substitute values, converting to the correct units if needs be.

You should be familiar with these formulae:
Number of moles $=\frac{\text { mass of substance (in g) }}{\text { Relative molecular mass, } \mathrm{Mr}}$

Concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ number of moles Volume of solution $\left(\mathrm{dm}^{3}\right)$

You should always show your working: give the formula

input values
then calculate your answer.

Always give the correct units with your answer.

Task 12

Show your working for each of these calculations.

1. The Mr of CO_{2} is 44 . Calculate the number of moles in $125 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$
\qquad
\qquad
\qquad
\qquad
2. 5.0 moles of CaCl_{2} is dissolved in $750 \mathrm{~cm}^{3}$ of water. What is the concentration in mol. dm^{-3} ?
\qquad
\qquad
\qquad
3. 2.0 g of NaOH were dissolved in $250 \mathrm{~cm}^{3}$ of water in a flask.
a) How many moles of NaOH are in this solution?
b) What is the concentration of the solution in mol.dm ${ }^{-3}$?
\qquad
\qquad
\qquad
\qquad

Rearranging equations

Equations are used in chemistry in year 12 and 13. It is essential that you can rearrange equations before you begin A level chemistry.

Remember: Whatever you do to one side, you need to do to the other side of the equation.

For example, to rearrange $\mathrm{c}=\underline{\mathrm{n}} \quad$ (concentration $=$ number of moles /volume) to find n : V

Multiply both sides by $v: c \times v=\underline{n} \times v$

Soc $x=n$

Task 13

Rearrange these equations:

1. $\mathrm{c}=\underline{\mathrm{n}}$ to find v
v
2. mass = moles to find moles \qquad
Mr
3. $\mathrm{pV}=\mathrm{nRT}$ to find T \qquad
4. \quad Rate $=k[\mathrm{NO}]^{2}$ to find $[\mathrm{NO}]$ \qquad
5. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ to find T \qquad
